On acyclic edge-coloring of complete bipartite graphs
نویسندگان
چکیده
منابع مشابه
On acyclic edge-coloring of complete bipartite graphs
An acyclic edge-coloring of a graph is a proper edge-coloring without bichromatic (2colored) cycles. The acyclic chromatic index of a graph G, denoted by a(G), is the least integer k such that G admits an acyclic edge-coloring using k colors. Let ∆ = ∆(G) denote the maximum degree of a vertex in a graph G. A complete bipartite graph with n vertices on each side is denoted by Kn,n. Basavaraju, C...
متن کاملEdge-Coloring Bipartite Graphs
Given a bipartite graph G with n nodes, m edges and maximum degree ∆, we find an edge coloring for G using ∆ colors in time T +O(m log ∆), where T is the time needed to find a perfect matching in a k-regular bipartite graph with O(m) edges and k ≤ ∆. Together with best known bounds for T this implies an O(m log ∆ + m ∆ log m ∆ log ∆) edge-coloring algorithm which improves on the O(m log ∆+ m ∆ ...
متن کاملAcyclic edge coloring of graphs
An acyclic edge coloring of a graph G is a proper edge coloring such that the subgraph induced by any two color classes is a linear forest (an acyclic graph with maximum degree at most two). The acyclic chromatic index χa(G) of a graph G is the least number of colors needed in any acyclic edge coloring of G. Fiamčík (1978) conjectured that χa(G) ≤ ∆(G) + 2, where ∆(G) is the maximum degree of G...
متن کاملEdge Coloring Bipartite Graphs Eeciently
The chromatic index of a bipartite graph equals the maximal degree of its vertices. The straightforward way to compute the corresponding edge coloring using colors, requires O((2 n 3=2) time. We will show that a simple divide & conquer algorithm only requires O((3=2 n 3=2) time. This algorithm uses an algorithm for perfect k-matching in regular bipartite graphs as a sub-routine. We will show th...
متن کاملAcyclic edge coloring of 2-degenerate graphs
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a′(G). A graph is called 2-degenerate if any of its induced subgraph has a vertex of degree at most 2. The class of 2-degenerate graphs properly contain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2017
ISSN: 0012-365X
DOI: 10.1016/j.disc.2016.08.026